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• Introduction to Multimodal Generative Models
• Compositional Generative Models
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Generative Models of Language 
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Generative Models of Other Modalities
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Images Videos



Generative Models of Other Modalities
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Actions Simulation



What are Some Challenges of Other Modalities?
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• Individual variables in the 
distribution are not necessarily 
autoregressively dependent on 
each other….
• Distributions are much higher 

dimensional  than natural language, 
with much more uncertainty per 
pixel.
• We may not have data to cover the 

entire distribution we want to 
operate over.



Relative Sizes of Models
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• Are at a much smaller size than 
that of language models (but are 
trained on more data!).
• Scaling laws are much weaker 

than those seen in language.
• Models are very frail – text-to-

image models often fail to follow 
even simple text prompts that 
deviate from those seen in 
training.
• Why?
• Language may be uniquely 

information-rich and compositional…

GPT-4 
(1.7T Parameters)

Movie-Gen
(30B Parameters)

Alphafold-3
(1B Parameters)



A Tale of Computational Scaling

DCGAN (2015) BigGAN (2018) Stable Diffusion (2022)
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A Tale of Computational Scaling?

DCGAN (2015) BigGAN (2018)

+ text conditioning
+ sample from distribution 

p(x)(p(x|c)/p(x))α
+ very careful data filtering

Stable Diffusion (2022)
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+ class conditioning
+ sample only high likelihood

samples
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+ class conditioning
+ sample only high likelihood

samples
Model simple conditional 

distributions



A Tale of Computational Scaling?

DCGAN (2015) BigGAN (2018)

+ text conditioning
+ sample from distribution 

p(x)(p(x|c)/p(x))α
+ very careful data filtering

Stable Diffusion (2022)
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+ class conditioning
+ sample only high likelihood

samples
Generate samples from a 

modified probability distribution



+ text conditioning
+ sample from distribution 
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+ very careful data filtering
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Stable Diffusion (2022)
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An astronaut riding a horse
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A image

+ text conditioning
+ sample from distribution 

p(x)(p(x|c)/p(x))α
+ very careful data filtering

+ text conditioning
+ sample from distribution 

p(x)(p(x|c)/p(x))α
+ very careful data filtering



A Tale of Computational Scaling?

Stable Diffusion (2022) Stable Diffusion (2022) Stable Diffusion (2022)

Generative models cannot fit arbitrarily high dimensional distributions but rather 
ones that are simple (rich conditioning or low intrinsic dimensionality of data).
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A imageAn astronaut riding a horse An astronaut riding a horse



Autoregressive Generative Models
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• Language models are typically 
parameterized as 
autoregressive generative 
models
• This reflects the natural casual 

order of language
• Can construct generative 

models over other distributions 
in an autoregressive manner
• But this does not necessarily follow 

the “structure of the domain”
• In practice, we typically vector 

quantize continuous inputs into 
discrete tokens



Limitations of Autoregressive Generative Models
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• Learning an autoregressive 
factorization can be much 
harder than learning the base 
probability density itself:
• For instance, consider a 

generative model of paths in a 
maze.

• The order of generation should 
follow the causal structure in 
the set of variables.
• For example, any-order 

language models perform poorly
• Generate pixels of an image in a 

hierarchical manner



Other Possible Generative Models
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• There is a zoo of other generative models such as:
• Energy-based Models
• Variational Autoencoders
• GANs
• Flow Models
• Diffusion models
• Many of these generative model classes can be interconverted 

between each other



Energy Based Models
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• The oldest class of generative models that inspired the 
development of many of the generative models we know 
today
•  Noise Contrastive Estimation -> GANs, Variational Partition Function 

Minimization -> VAEs, Ancestral Importance Sample + Score 
Matching -> Diffusion

• Represent the probability distribution 𝑝! 𝑥 	 as an 
unnormalized distribution parameterized with an energy 
function 𝐸! 𝑥  where  𝑝! 𝑥 	∝ 𝑒"#! $

• Allows us to represent any probability distribution with a neural 
network that outputs a single scalar output

• The simplest training objective for EBMs is approximate 
maximum likelihood estimation



Energy Based Models
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• The likelihood of datapoint x is given under an EBM is give 
by 𝑝! 𝑥 = 	𝑒"#! $ / ∫ 𝑒"#! $ 𝑑𝑥	, where denominator is 
known as the partition function and is usually intractable to 
compute.
• The gradient of maximum likelihood training for a point 𝑥	is 

given by:

• The last expression can estimate through Monte Carlo 
approximation by sampling from the model distribution!

∇! log 𝑝!(𝑥) = −∇!𝐸! x − ∇! log1𝑒"#! $ 𝑑𝑥

= −∇!𝐸! x +
∫∇!𝐸! 𝑥 𝑒"#! $ 𝑑𝑥	

∫ 𝑒"#! $ 𝑑𝑥

= −∇!𝐸! x + 𝔼$~&! $ ∇!𝐸! 𝑥



Energy Based Models
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• The likelihood of datapoint x is given under an EBM is give 
by 𝑝! 𝑥 = 	𝑒"#! $ / ∫ 𝑒"#! $ 𝑑𝑥	, where denominator is 
known as the partition function and is usually intractable to 
compute.
• This corresponds to maximum likelihood loss: 

• Contrastively decrease the energy of real data while increase 
the energy of samples from the model (inspired the 
development of contrastive learning).

∇!ℒ'( = 𝔼$~& $ [∇!𝐸(𝑥)] − 	𝔼$~&! $ [∇!𝐸(𝑥)]

Drawn from Data Drawn from Learned Distribution



Learning Energy Functions

E(x)
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Limitations of Energy Based Models
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• EBMs make training very challenging and slow because it 
requires you to explicitly draw MCMC sample from the model 
probability distribution in order to train the model
• This inspired many future generative models which learned explicit 

networks  for sampling
• However, this comes with benefits. – the parameterization 
𝑝! 𝑥 	∝ 𝑒"#! $  makes no assumptions on the nature of the 
probability distribution modeled, allowing the model to learn 
to flexibly capture any distribution
• In contrast, all other generative models make assumptions on 

the structure of the probability distribution they are modeling, 
which can be inaccurate dependent on the distribution.



From EBMs to Variational Autoencoders
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• Training EBMs is challenging because it involves sampling 
from a high dimensional distribution 𝑝! 𝑥  for maximum 
likelihood training
• We can make it easier by factorizing the distribution with a 

latent distribution

• Learning 𝑝! 𝑥|𝑧  can be much easier than learning 𝑝! 𝑥  -- for 
instance 𝑝! 𝑥|𝑧  can be Gaussian even when 𝑝! 𝑥  is not
• However, maximum likelihood training of 𝑝! 𝑥  still requires us 

to exhaustively sample all value of 𝑝 𝑧  which is intractable

𝑝! 𝑥 = 	%𝑝! 𝑥|𝑧 𝑝 𝑧 𝑑𝑧	



From EBMs to Variational Autoencoders
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• Use variational inference to learn an amortized sampler 𝑞∅ 𝑧|𝑥  
for 𝑝 𝑧   given an input 𝑥

• Using the Jensen’s inequality, we can write the log-likelihood 
as:

• The above objective is exactly the training objective used to 
train the VAE!

𝑝! 𝑥 = 	%𝑝! 𝑥|𝑧 𝑝 𝑧 𝑑𝑧 = %𝑝! 𝑥|𝑧 𝑝 𝑧
𝑞∅ 𝑧|𝑥
𝑞∅ 𝑧|𝑥

𝑑𝑧 = 	Ε#∅ $|& 𝑝 𝑧
𝑝! 𝑥|𝑧
𝑞∅ 𝑧|𝑥

log	𝑝! 𝑥 = log Ε#∅ &|$ 𝑝 𝑧
𝑝! 𝑥|𝑧
𝑞∅ 𝑥|𝑧

≥ 	Ε#∅ &|$ 𝑝! 𝑥|𝑧 − 𝐾𝐿 𝑞∅ 𝑧|𝑥 |𝑝 𝑧 )



Variational Autoencoders
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• Maximize log-likelihood in the form

• In a VAE, we represent 𝑝! 𝑥|𝑧  and 𝑞∅ 𝑧|𝑥  as Gaussian 
distributions

log	𝑝! 𝑥 = log Ε#∅ &|$ 𝑝 𝑧
𝑝! 𝑥|𝑧
𝑞∅ 𝑥|𝑧

≥ 	Ε#∅ &|$ 𝑝! 𝑥|𝑧 − 𝐾𝐿 𝑞∅ 𝑧|𝑥 |𝑝 𝑧 )



From Variational Autoencoders / EBMs to Diffusion Models
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• In practice, VAEs often generate blurry samples as both 
amortized sampler and generator have limited capacity
• Reduce the capacity requirements for each component of the 

variational procedure by constructing an annealed sequence 
of intermediate latent variables (inspired from anneal 
importance sampling from EBMs)



Diffusion Models
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• In practice, VAEs often generate blurry samples as both 
amortized sampler and generator have limited capacity
• Reduce the capacity requirements for each component of the 

variational procedure by constructing an annealed sequence 
of intermediate latent variables (developed originally to draw 
samples from the partition function of EBMs)



Diffusion Models
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• In practice, VAEs often generate blurry samples as both 
amortized sampler and generator have limited capacity
• Reduce the capacity requirements for each component of the 

variational procedure by constructing an annealed sequence 
of intermediate latent variables (developed originally to draw 
samples from the partition function of EBMs)



From EBMs to GANs
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• To learn an EBM  𝑝! 𝑥 	∝ 𝑒"#! $  to fit a probability distribution  
𝑝< 𝑥 , one clever way is through classification (noise 
contrastive estimation)
• Given samples from a data distribution 𝑝< 𝑥  and a noise 

distribution 𝑝=>?@A 𝑥 , we can implicitly recover the energy 
function 𝐸! 𝑥  by training a classifier ℋ 𝑥  classifying if a data 
point is either from the data or noise distribution. The energy 
function is the difference of the logits ℋ 𝑥  and 𝑝=>?@A 𝑥 .
• This procedure allows us to replace the difficult problem of 

drawing samples from model distribution with generating 
samples from the noise distribution. However, the variance of 
this estimator still depends on how close 𝑝=>?@A 𝑥  is to 
sampling from the 𝑝! 𝑥



GANs
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• Instead of explicitly constructing a distribution 𝑝=>?@A 𝑥 , learn 
the neural network g(z) that approximates this distribution!
• Continue using the classifier ℋ 𝑥  to distinguish between real 

and fake samples
• The noise distribution is the generator and the classifier is the 

discriminator, leading to GANs!



Overview
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• Introduction to Multimodal Generative Models
• Compositional Generative Models



Compositional Generative Models
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• In practice, in many multimodal domains, data is scarce and 
often covers a sparse subset of the distribution we would like 
generative models to operate over.
• We can use the idea of compositional generative modeling to 

induce models to generate samples that are outside of the 
distribution of the data seen by the model

• Above factorization only requires data to be seen from the 
pairwise marginals instead of the full joint distribution of 
samples

p(x, y, z) = p(x, y) p(y, z)



Why Does Generative AI for Language Work So Well?

An astronaut riding a horse
in a photorealistic style.

A large blue metal cube in front of a large 
cyan metal cylinder. A large blue metal 
cube on the left of small metal sphere. 
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Natural Language

Real World Distribution
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Why Does Generative AI on Other Settings Work Poorly?

An astronaut riding a horse
in a photorealistic style.

A large blue metal cube in front of a large 
cyan metal cylinder. A large blue metal 
cube on the left of small metal sphere. 

39
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Training Distribution
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Embodied Data
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Why Does Generative AI on Other Settings Work Poorly?

An astronaut riding a horse
in a photorealistic style.

A large blue metal cube in front of a large 
cyan metal cylinder. A large blue metal 
cube on the left of small metal sphere. Compared to pixels in images (and many other continuous distributions), natural 

language is much simpler (structured for effective communication) and naturally 
compositional (infinite use of finite means). 41

Natural Language

Training Distribution

Real World Distribution Real World Distribution

Training Distribution

Embodied Data



Composition of Learned Factors Yields Strong Generalization

An astronaut riding a horse
in a photorealistic style.

A large blue metal cube in front of a large 
cyan metal cylinder. A large blue metal 
cube on the left of small metal sphere. 

Natural Language

Training Distribution

Real World Distribution

42

Real World Distribution

Training Distribution

Embodied Data

Energy Based Models (EBMs) provide a probabilistic 
manner to represent the real distribution as a 

composition of factors!



An astronaut riding a horse
in a photorealistic style.

A large blue metal cube in front of a large 
cyan metal cylinder. A large blue metal 
cube on the left of small metal sphere. 

Factor  (Axis 1)
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 (A
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s 
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Composition of Learned Factors Yields Strong Generalization
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Natural Language

Training Distribution

Real World Distribution

Training Distribution

Embodied Data

Energy Based Models (EBMs) provide a probabilistic 
manner to represent the real distribution as a 

composition of factors!

𝑝 𝑥 ∝ 	+
"#$

%

𝑝"(𝑥")

Real World Distribution



Composition of Learned Factors Yields Strong Generalization

An astronaut riding a horse
in a photorealistic style.

A large blue metal cube in front of a large 
cyan metal cylinder. A large blue metal 
cube on the left of small metal sphere. 

Factors are combined  to represent the 
entire distribution (even parts with no data).

Fa
ct

or
 (A

xi
s 

2)

Factor  (Axis 1)
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Natural Language

Training Distribution

Real World Distribution

Training Distribution

Embodied Data

Real World Distribution

𝑝 𝑥 ∝ 	+
"#$

%

𝑝"(𝑥")



Composition of Learned Factors Yields Strong Generalization

Fa
ct

or
 (A

xi
s 

2)

Factor  (Axis 1)

Natural Language

Training Distribution

Real World Distribution

Training Distribution

Embodied Data

Real World Distribution

𝑝 𝑥 ∝ 	+
"#$

%

𝑝"(𝑥")

Factors make independence assumptions about 
data that are biased.



Composing Different Energy Functions at Prediction Time

E

Minimize Energy

E1

Red Truck
 Energy Function
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Composing Different Energy Functions at Prediction Time

E

Minimize Energy

E1

En

Red Truck
 Energy Function

Desert
 Energy Function
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Combining Probability Distributions with Energy Functions

[1] Du et al. Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC. ICML 2023

Products: =×

𝑝"(𝑥) 𝑝#(𝑥) 𝑝"(𝑥) 𝑝#(𝑥)
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Combining Probability Distributions with Energy Functions

[1] Du et al. Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC. ICML 2023

Products:

Mixtures:

=×

𝑝"(𝑥) 𝑝#(𝑥) 𝑝"(𝑥) 𝑝#(𝑥)

=+

𝑝"(𝑥) 𝑝#(𝑥) 𝑝" 𝑥 + 𝑝#(𝑥)
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Combining Probability Distributions with Energy Functions

[1] Du et al. Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC. ICML 2023

Products:

Mixtures:

=×

𝑝"(𝑥) 𝑝#(𝑥) 𝑝"(𝑥) 𝑝#(𝑥)

=+

𝑝"(𝑥) 𝑝#(𝑥) 𝑝" 𝑥 + 𝑝#(𝑥)

Inversion: / =

𝑝"(𝑥) 𝑝#(𝑥) 𝑝" 𝑥 / 𝑝#(𝑥)$

50



Applications of Composing Generative Models
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“A couch right next to the 
windows” AND “A table in 
front of the couch” AND “A 
vase of flowers on top of the 

table”

“A green tree swaying in the 
wind” AND “A red brick 

house located behind a tree” 
AND “A lawn in front of the 

house”

“A pink sky” AND 
“A blue mountain in the 
horizon” AND “Cherry 
Blossoms in front of the 

mountain”

Single 
Model

Compositional 
Model

“A blue bird on a tree” 
AND “A red car behind 
the tree” AND “A green 

forest in the 
background”

Starship Enterprise firing phasers

Movie still of epic space battle

Giant mocha robot holding a glowing sword

Glowing phaser beam

Sun with lens flare

Portion of Mars. Debris from atmosphere

Original 
Generation

Adapted 
Generation 

(Digital Art)

Adapted 
Generation 

(Outdoor Video)

Adapted 
Generation
(Storybook 
Illustration)

[2] Yang*, Du* et al. Probabilistic Adaptation of 
Text-to-Video Models. ICLR 2024

[1] Liu*, Li*, Du* et al. Composable Visual Generation with 
Diffusion Models. ECCV 2022

[3] Du et al. Reduce, Reuse, Recycle: Compositional Generation with 
Energy-Based Diffusion Models and MCMC. ICML 2023 [4] Yang, Mao, Du et al. Compositional Diffusion-Based 

Continuous Constraint Solvers. CoRL 2023

geomA geomB geomC

poseA poseB poseCA

B

C
D

E

geomBox

poseBox

close-to(A, B)

graspA
trajA

poseA0

cfree(A, B)

valid-traj

cfree(A, C) ......

(a) Visualization of the environment 
while placing object A.

(b) Visualization of the constraint graphs associated with the 
object placement. There are three decision variables.

in(A, Box)

The arm trajectory trajA
connects A’s initial pose 
poseA0 and the target pose 
poseA given graspA.

Box



Generalizing Beyond Demonstrations through Compoistion

We want to construct 
robotic agents that can 
generalize beyond the  
demonstrations they 

have seen!

Trajectory Synthesis

Demonstrations

Robot Actions

52



Planning through Compositional Generation

Decompose 
demonstrations into 
a model capturing 

the dynamics of the 
environment + a 
model to capture 
the goal of a task.

Trajectory Synthesis

Demonstrations

G
oa

l

Dynamics

Robot Actions

53

𝑝&'()(𝜏) ∝ 𝑝*+)(,-./(𝜏)𝑝0(/1(𝜏, goal)



Planning through Compositional Generation

Trajectory Synthesis

Demonstrations

G
oa

l

Dynamics

Robot Actions

54

𝑝&'()(𝜏) ∝ 𝑝*+)(,-./(𝜏)𝑝0(/1(𝜏, goal)

Enables 
generalization to 

new combinations 
of states + goals 

through 
probabilistic 

planning!



Planning with Energy Minimization

E

Minimize Energy

E1

E2

Trajectory Energy 
Function

Cost Functions
(Goal, Value Functions, 
Test-Time Constraints)

[1] Du et al. Model Based Planning with Energy Based Models. CoRL 2019.
[2] Janner*, Du* et al. Planning with Diffusion for Flexible Behavior Synthesis. ICML 2022
[3] Ajay*, Du*, Gupta* et al. Is Conditional Generative Modeling all You Need For Decision Making? ICLR 2023

𝒯

𝒯

𝒯

55

Planning/reinforcement 
learning through inference 
time search on composed 

distributions.



𝐸$(𝒯)

Reinforcement Learning through Value Composition

𝐬D

𝐚D

𝐬E

𝐚E

𝐬F

𝐚F

𝐬G

𝐚G

𝐬H

𝐚H

𝐬I

𝐚I

𝑟(𝐬!) + 𝛾𝑟 𝐬" + 𝛾#𝑟 𝐬#  +𝛾$𝑟 𝐬$  +𝛾%𝑟 𝐬%  +𝛾&𝑉 𝐬&𝐸2(𝒯)

𝐸$(𝒯) + 𝐸2(𝒯) 
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𝐸$(𝒯)

Reinforcement Learning through Value Composition

𝐬D

𝐚D

𝐬E

𝐚E

𝐬F

𝐚F

𝐬G

𝐚G

𝐬H

𝐚H

𝐬I

𝐚I

𝑟(𝐬!) + 𝛾𝑟 𝐬" + 𝛾#𝑟 𝐬#  +𝛾$𝑟 𝐬$  +𝛾%𝑟 𝐬%  +𝛾&𝑉 𝐬&𝐸2(𝒯)

𝐸$(𝒯) + 𝐸2(𝒯) 

Solve many different tasks with one model!
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Reinforcement Learning through Value Composition

58



Goal Planning through Optimization

𝐬0

𝐚0

𝐬1

𝐚1

𝐬2

𝐚2

𝐬3

𝐚3

𝐬4

𝐚4

𝐬5

𝐚5
𝐸$(𝒯)

𝐸2(𝒯)

𝐸$(𝒯) + 𝐸2(𝒯) 
𝐬0 𝐠

𝐬0 g

59

Construct a zero-shot goal-seeking policy!



Goal Planning through Optimization
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Goal Planning through Optimization

Single Task Planning Multi-Task Planning

61



Goal Planning through Optimization

Single Task Planning Multi-Task Planning

Baselines require per task retraining 
while our trained model can be applied 

across tasks!

62



Planning From Partial Visual Observations on Real Robots

[1] Chi, Feng, Du et al. Diffusion Policy: Visualmotor Policy Learning via Action Diffusion. RSS 2023.

Can learn complex trajectory 
planning given only visual 

observations given very few 
(50) demos.
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Solving Long Horizon Tasks by Composing Foundation Models

Solving a long horizon decision-
making task requires 

generalization across many 
sources of knowledge.

Make A Cup of Tea

Decision Making

Demonstrations

Embodied Agents

64



Composing Foundation Models for Embodied Agents

Compose foundation 
models representing each 

axis of information!

Make A Cup of Tea

Decision Making

Demonstrations

Embodied Agents

Vi
su

al
 K

no
w

le
dg

e 

Procedural Information 

𝑝03( 𝜏0340, 𝜏-,(53, 𝜏(.0-6) ∝
𝑝778 𝜏0340 	𝑝9-*36 𝜏0340, 𝜏-,(53 	𝑝(.0-6)(𝜏-,(53, 𝜏(.0-6))
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Hierarchical Planning with Foundation Models

Language Model Video Model Egocentric Action
Model

Task Information Motion Information Kinematics Information

[1] Ajay*, Han*, Du* et al. Compositional Foundation Models for Hierarchical Planning. NeurIPS 2023 

We want to construct a plan to make a cup of tea that is 
semantically, geometrically, and physically executable on a robot!

67

1) Look for a tea kettle
2) Heat water
3) Find teabag
4) …



Hierarchical Planning with Foundation Models

Language Model Video Model Egocentric Action
Model

Task Information Motion Information Kinematics Information

[1] Ajay*, Han*, Du* et al. Compositional Foundation Models for Hierarchical Planning. NeurIPS 2023 

We want to construct a plan to make a cup of tea that is 
semantically, geometrically, and physically executable on a robot!
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𝑝03( 𝜏0340, 𝜏-,(53, 𝜏(.0-6) ∝
𝑝778 𝜏0340 	𝑝9-*36 𝜏0340, 𝜏-,(53 	𝑝(.0-6)(𝜏-,(53, 𝜏(.0-6))



Hierarchical Planning with Foundation Models

High Level Action

Physical 
Plausibility

Kinematic 
Plausibility

Low Level Action

[1] Ajay*, Han*, Du* et al. Compositional Foundation Models for Hierarchical Planning. NeurIPS 2023 69

Language Model Video Model Egocentric Action
Model

Task Information Motion Information Kinematics Information

We want to construct a plan to make a cup of tea that is 
semantically, geometrically, and physically executable on a robot!

𝑝03( 𝜏0340, 𝜏-,(53, 𝜏(.0-6) ∝
𝑝778 𝜏0340 	𝑝9-*36 𝜏0340, 𝜏-,(53 	𝑝(.0-6)(𝜏-,(53, 𝜏(.0-6))



Hierarchical Decision Making with Multimodal Models

Stack red block on a 
cyan block and place a 
brown block to the right 

of stack.

Goal

Start Image

Place cyan block in brown box.

Generated Video Plan
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Generated Language Plan



Place white block in a cyan bowl.

Hierarchical Decision Making with Multimodal Models

Stack red block on a 
cyan block and place a 
brown block to the right 

of stack.

Goal

Start Image

Generated Video Plan
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Generated Language Plan



A
I

Goal: Stack red block on top of 
brown block and place yellow 
block to the left of the stack

Hierarchical Decision Making with Multimodal Models Execution



Zero-Shot Planning and Execution with Foundation Models

Task Information Motion Information Kinematics Information

[1] Du et al. Video Language Planning. ICLR 2024 

We can plan and execute unseen long horizon tasks on the real robot 
without any explicit task training!
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Vision Language Model 
(PALM-E)

Video Model
(UniPi)

Action Model 
(Goal-Conditioned RT2)



Zero-Shot Planning and Execution with Foundation Models
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Goal: Put the fruit into the 
top drawer.



Overview
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• Introduction to Multimodal Generative Models
• Compositional Generative Models
• Discussion



Lecture 9: Generative AI, Part 1

Yilun Du
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CS 2281R: Mathematical & Engineering Principles for 
Training Foundation Models


